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Why (lattice) N' = 4 Yang-Mills?

» Finite QFT - true at 1 loop even on lattice!

» Conformally invariant in continuum. How does this get
restored on latticeas V —ocoand a— 07

» Cornerstone of AdSCFT correspondence.

» Only known example of 4D theory which admits a SUSY
preserving discretization. Lattice formulation defines theory
outside of perturbation theory.

» Gravity as (N = 4) Yang-Mills squared ...
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Many people contributed to development of lattice formulation eg.
Unsal, Kaplan, Sugino, Kawamoto, Hanada, Joseph,...

Here, report on recent results from (somewhat) large scale
simulations with:

» Tom DeGrand, CU Boulder
Poul Damgaard, NBI

Joel Giedt, RPI

David Schaich, Syracuse U.
Aarti Veernala, Syracuse U.
S.C
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Introduction.

v

v

Key ingredients in lattice formulation.

Continuum limit. Restoration of full SUSY (Joel Giedt)
Practical issues:

v

v

» Regulating flat directions (S.C)
» Suppressing U(1) monopoles (S.C)
» Sign problems (or lack of them) (David Schaich)

Static potential (David Schaich)

v
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Key ingredients

Continuum N = 4 YM obtained by dimensional reduction of 5D
theory:

_ 1 —
S= Q/dSX (Xab]:ab +n [Daapa] + 277d> +/ d5X 6abcdeXab,IDt:Xde

Usual fields Twisted fields
App=1...4 ¢;i=1...6 Az,a=1...5
Vi f=1...4 1, %a, Xabs 3, b=1...5

Complex bosons: A, = A, + ips, Dy = 05+ A, Fap = [Da, Dp)

’ Q is scalar supersymmetry‘
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Scalar supersymmetry

| Where did Q come from ?|

Appearance of scalar fermion 7 implies scalar SUSY.
Action:

QA =v, QyY,=0 +... similar on other fields

Notice !

» Any action of form S = Q (something) will be trivially
invariant under Q.

» This is how theory evades usual problems of lattice susy
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Some lattice details

» Place all fields on links (1 degenerate case - site field). Gauge
transform like endpoints.

» Prescription exists for replacing derivatives by gauge covariant
finite difference operators.

» But what lattice to use ? Natural to look for 4D lattice with a

basis of 5 equivalent basis vectors — | A} lattice

A4 set of points in 5D hypercubic lattice Z° which satisfy
m+n+n3+ns+ns=0
A} is just dual lattice to Ay.

(Also: weight lattice of SU(5), basis vectors for 4-simplex, ...)
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Examples of A}

Symmetry group: Sg11. Low lying irreps match SO(d)

d=2 d=3
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Advantages of formulation

Single exact SUSY is enough to:
» Pair boson/fermion states

» Classical moduli space survives in quantum theory: no scalar
potential developed to all orders in lattice perturbation theory

» Fine tuning is reduced to single log tuning (Joel)
» beta function of lattice theory vanishes at lloop.

» Certain quantities eg partition function can be computed
exactly at 1-loop.
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Novel Features

» Exact SUSY requires complexified links in algebra of U(N)!

N2
= TUi(x)
i=1

» Naive continuum limit requires U0 =1+ ... (T° = Iy)

» One of many possible vacua .. stabilize by adding potential

term 2
65 = Z( Tr Us(x)U ()-1)

» Selects correct vacuum state. Breaks exact SUSY but all
counter terms must vanish as p — 0.
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Restoration of exact Q SUSY

Q Ward identity:
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Unfortunately this is not quite enough ...
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Confinement of U(1) at strong coupling

U(1) monopole density det(plaquette)
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Add to action a term that (approximately) projects
U(N) — SU(N)

0S2="r Y |detP,, — 1]
X, u<v
To leading order

8S, =2k Z 1—cosF b) +

X,pu<v

For k > 0.5 U(1) sector weakly coupled and monopole density very
small.

Marginal coupling to sector which decouples in continuum limit.
Extrapolate Kk — 0 7

Allows us to push to strong coupling in non-abelian sector

Simon Catterall Simulating A/ = 4 Yang-Mills



Kappa dependence
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Simulations

» RHMC algorithm to handle Pfaffian with multiple time scale
Omelyan integrator.

» Code base extension to MILC. Arbitrary numbers of colors.
A} lattice communication.

> Lattices stored as hypercubic {n,} with additional
body-diagonal link. Map to physical space-time needed only
for correlators and only at analysis stage. R = Zizl é,n,

» 6% 8% 83 x 24, 163 x 32 lattices with apbc for fermions in
temporal direction.
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Currently employing large(ish) simulations to study new
lattice formulation of N' = 4 super Yang-Mills.

Retains exact SUSY. Reduces dramatically number of

couplings needed to tune to supersymmetric continuum limit
(Joel's talk).

“Naive formulation” requires supplementary couplings (u, ).
Limit w, x — 0 under control.

No sign problem (David's talk)

No confinement even at strong coupling (David’s talk).

Starting to look at physically interesting quantities eg. anomalous
dimensions (Konishi) ....
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